

HCal Light Collection Efficiency Correction Simulation Study

Liang Xue
Georgia State University

Detector Configuration

- Inner HCal + Magnet + Outer HCal
- Inner HCal:
 - Scint tile / Stainless steel
 - R(in)=116 cm, R(out)=135 cm
 - Scint thickness: 0.7 cm, # Scint tiles: 64x5
 - Tilted-angle: 29.4°
- sPHENIX field map
- 5 k, 30 GeV charge pion

HCAL Reference Design

HCAL INNER

New sPHENIX software

MAGNET

Pure G4Hit, ideal towering HCAL OUTER

Outer Hcal:

- Scint tile / Fe
- R(in)=178 cm, R(out)=260.3 cm
- Scint thickness: 0.7 cm, # Scint tiles: 64x5

/direct/phenix+sim01/phnxreco/users/lxue/G4Sim_RefDesignLightYield/analysis

Light Collection Efficiency

- Previous study assume a uniform light collection efficiency.
- Light collection efficiency is different for photons at different position of the scintillator tile.
- A linear light collection efficiency correction is applied by assuming Eff(outer radius)=1.0, and Eff(inner radius)=0.4 for outer HCAL, Eff(inner radius)=0.85 for inner HCAL

$$eff = \frac{1.0 - 0.4}{R_{out} - R_{in}} \times (r - R_{in}) + 0.4$$

E. Kistenev

Energy response, sampling factors before light correction

A spike (channeling / punch through) at 0 for energy response in HCAL outer.

HCAL inner has a larger SF tail; No distinct decrease trend for SF vs. longitudinal center of gravity (LCG) for HCAL inner.

HCAL outer SF is dependent on LCG/radius (decrease trend) as expected.

SF for HCAL INNER

Before Light Eff Correction

energy response before light yield efficiency balance

SF for HCAL OUTER

sampling fraction factor before light yield efficiency balance

Energy response, sampling factors after light correction

A spike (channeling / punch through) at 0 for energy response in HCAL outer.

HCAL inner has a larger SF tail; No distinct \
decrease trend for SF vs. longitudinal center
of gravity (LCG) for HCAL inner.

 HCAL outer SF vs. LCG dependence is removed after light efficiency correction.

SF for HCAL INNER

After Light Eff Correction

energy response after light yield efficiency balance

SF for HCAL OUTER

sampling fraction factor after light yield efficiency balance

5

Reconstructed energy before/after light correction

- Energy resolution (fitted sigma) does not change much.
- The spike at 0 (channeling / punch through <3% with E < 3 GeV), long tail (energy leakage, <5% with cut 3 GeV < E < 14 GeV) persists after light correction.
- Light correction does eliminate the double gaussian structure that exists before correction.

Spike, lower side tail of energy spectra

 Low side tail due to energy leakag of deep hadronic shower is <5% with cut 3 GeV <E< 14GeV.

Summary

- Light collection efficiency correction is studied with 30 GeV pion for sPHENIX reference design.
- Light correction with Eff(outer radius)=1.0, and Eff(inner radius)=0.4
 for outer HCAL can remove the SF dependence on LCG/radius.
- Particle channeling/punch through is <3%, and low side tail due to energy leakage is <5% for 30 GeV pion.